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Abstract

A face irregular entire labeling is introduced by Baca et al. recently, as a modification of the well-known
vertex irregular and edge irregular total labeling of graphs and the idea of the entire colouring of plane
graph. A face irregular entire k-labeling ::VUEUF - {1,2,---,k} of a 2-connected plane graph
G = (V,E,F) is a labeling of vertices, edges, and faces of G such that for any two different faces f and g,
their weights w, (f) and w; (f) are distinct. The minimum k for which a plane graph G has a face irregular
entire k-labeling is called the entire face irregularity strength of G, denoted by efs(G).

This paper deals with the entire face irregularity strength of a book with m n-polygonal pages, where
embedded in a plane as a closed book with n —sided external face.

Keywords and phrases: Book, entire face irregularity strength, face irregular entire k-labeling, plane graph,
polygonal page.

NILAI KETAKTERATURAN SELURUH MUKA
GRAF BUKU SEGI BANYAK

Abstrak

Pelabelan tak teratur seluruh muka diperkenalkan oleh Baca e al. baru-baru ini, sebagai suatu modifikasi
atas pelabelan total tak teratur titik dan tak teratur sisi suatu graf serta ide tentang pewarnaan lengkap pada
graf bidang. Pelabelan k- tak teratur seluruh muka ::VUEUF - {1,2,---,k} dari suatu graf bidang
2-connected G = (V,E, F) adalah suatu pelabelan seluruh titik, sisi, dan muka internal dari G sedemikian
sehingga untuk sebarang dua muka f and g berbeda, bobot muka w,(f) and w,(f) juga berbeda. Bilangan
bulat terkecil k sedemikian sehingga suatu graf bidang G memiliki suatu pelabelan k-tak teratur seluruh
muka disebut nilai ketakteraturan seluruh muka dari G, dinotasikan oleh efs(G).

Kami menentukan nilai eksak dari nilai ketakteraturan seluruh muka graf buku segi-n, dimana pada bidang
datar dapat digambarkan seperti suatu buku tertutup.

Kata Kunci: Graf bidang, graf buku segi-n, nilai ketakteraturan seluruh muka, pelabelan lengkap
k-tak teratur muka.

1. Introduction

Let G be a finite, simple, undirected graph with vertex set V(G )and edge set E(G). A total labeling of
G is a mapping that sends V' U E to a set of numbers (usually positive or nonnegative integers). According to
the condition defined in a total labeling, there are many types of total labeling have been investigated.

Baca, Jendrol, Miller, and Ryan in [1] introduced a vertex irregular and edge irregular total labeling of
graphs. For any total labeling f:V UE — {1, 2, ..., k}, the weight of a vertex v and the weight of an edge
e = xy are defined by w(v) = f(v) + Dyver f (uv) and w(xy) = f(x) + f(y) + f(xy), respectively. Ifall
the vertex weights are distinct, then f is called a vertex irregular total k-labeling, and if all the edge weights
are distinct, then f is called an edge irregular total k-labeling. The minimum value of k for which there exist
a vertex (an edge) irregular total labeling f:V UE — {1, 2, ..., k} is called rthe rotal vertex (edge) irregularity
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strength of G and is denoted by tvs(G) (tes(G)), respectively. There are several bounds and exact values of
tvs and tes were determined for different types of graphs given in [1] and listed in [2].

Furthermore, Ivanco and Jendrol in [3] posed a conjecture that for arbitrary graph G different from K5
and maximum degree A(G),
EG)|+2] |AG)+1
tes(G) = max”l ( ;l ‘,[ ( ; ‘}

Combining previous conditions on irregular total labeling, Marzuki et al. [4] defined a totally irregular
total labeling. A total k-labeling f:V U E — {1, 2, ..., k} of G is called a rotally irregular total k-labeling if for
any pair of vertices x and y, their weights w(x) and w(y) are distinct and for any pair of edges x;x, and y; y,,
their weights w(x;x,) and w(y;y,) are distinct. The minimum k for which a graph G has totally irregular
total labeling, is called rotal irregularity strength of G, denoted by ts(G). They have proved that for every
graph G,

ts(G) = max{tes(G), tvs(G)} (6)

Several upper bounds and exact values of ts were determined for different types of graphs given in [4], [5],
[6], and [7].

Motivated by this graphs invariants, Baca et al. in [8] studied irregular labeling of a plane graph by
labeling vertices, edges, and faces then considering the weights of faces. They defined a face irregular entire
labeling.

A 2-connected plane graph G = (V, E, F) is a particular drawing of planar graph on the Euclidean plane
where every face is bound by a cycle. . Let G = (V, E, F) be a plane graph.

Alabeling A : VUEUF - {1,2,--+,k} is called a face irregular entire k-labeling of the plane graph G if for
any two distinct faces f and g of G, their weights w; (f) and w; (f) are distinct. The minimum k for which a
plane graph G has a face irregular entire k-labeling is called the entire face irregularity strength of G, denoted
by efs(G). The weight of a face f under the labeling A is the sum of labels carried by that face and the edges
and vertices of its boundary. They also provided the boundaries of efs(G).

Teorema A. Let G = (V,E,F) be a 2-connected plane graph G with n; i-sided faces, i> 3.
Let a = min{i|n; # 0} and b = max{i|n; # 0}. Then

[2a+n3+n4+---+nb

T ] <efs(G) < max{n;|3 <i < b}

For n;, = 1, they gave the lower bound as follow

Teorema B. Let G = (V,E,F) be a 2-connected plane graph G with n; i-sided faces, i > 3. Let
a = min{i|n; # 0}, b = max{i|n; # 0}, n;, = 1 and ¢ = max{i|n; # 0,i < b}. Then
2a +|F| — 1}

efs(@) = | =577

Moreover, by considering the maximum degree of a 2-connected plane graph G, they obtained the following
theorem.

Theorem C. Let G = (V, E, F) be a 2-connected plane graph G with maximum degree A. Let x be a vertex of
degree A and let the smallest (and biggest) face incident with x be an a-sided (and a b-sided) face, respectively.
Then

2a+A—1]

efs(G) = [ >

They proved that Theorem B is tight for Ladder graph L,,, n = 3, and its variation and Theorem C is
tight for wheel graph W,,, n = 3. In this paper, we determine the exact value of efs of a book with m
n-polygonal pages which is greater than the lower bound given in Theorem A - C.
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2. Main Results

Considering Theorem C, efs(W,), and a condition where every face of a plane graph shares common
vertices or edges, our first result provide a lower bound of the entire face irregularity strength of a graph with
this condition. This can be considered as generalization of Theorem A, B, and C.

Lemma 2.1. Let G = (V,E,F) be a 2-connected plane graph with n; i-sided faces, i > 3. Let
a = min{i| n; # 0}, b = max{i| n; # 0}, c = max{i| n; # 0,i < b}, and d be the number of common labels
of vertices and edges which have bounded every face of G. Then

(|[2a+|F|—d—-1
[ 2c—d+1
[Za + |F| — d‘

}, forn, =1,
efs(G) =
h—d+1 otherwise.

Proof. Let A:VUEUF - {1,2,-+,k} be a face irregular entire k-labeling of 2-connected plane graph
G = (V,E,F) with efs(G) = k. Our first proof is for n;, # 1. By Theorem A, the minimum face-weight is at
least 2a + 1 and the maximum face-weight is at least 2a + |F|. Since G is 2-connected, each face of G is a
cycle. It implies that every face might be bounded by common vertices and edges.

Let d be the number of common labels of vertices and edges which have bounded every face of G and D be
the sum of all common labels. Then the face-weights w; (f;), wa (f1), -+, wa( f F|) are all distinct and each of
them contains D, implies the variation of face-weights is depend on 2a —d + 2 <i < 2b —d + 1 labels.
Without adding D, the maximum sum of a face label and all vertices and edges-labels surrounding it is at least

2a + |F| — d. This is the sum of at most 2b — d + 1 labels. Thus, we have efs(G) > [%].

For n, = 1, it is a direct consequence from Theorem B with the same reason as in the result above. m

This lower bound is tight for ladder graphs and its variation and wheels given in [8].

A book with m n-polygonal pages By, m = 1,n = 3, is a plane graph obtained from m-copies of cycle
C,, that share a common edge. There are many ways drawing Bj; for which the external face of B}; can be an
n-sided face or a (2n — 2)-sided face.

By considering that topologically, By, can be drawn on a plane as a closed book such that B} has
an n-sided external face, an n-sided internal face, and m — 1 number of (2n — 2)-sided internal faces, the
entire face irregularity strength of B}, is provided in the next theorem.

Theorem 2.2. For B}, m = 1,n = 3, be a book with m n-polygonal pages whose an n-sided external face,
an n-sided internal face, and m — 1 (2n — 2)-sided internal faces, we have

2, form € {1, 2};
efs(Bn) = { n+m-—7

, otherwise.
4n -5

Proof. Let Bjt,m = 1,n = 3, be a 2-connected plane graph. For m € {1,2}, by Lemma 2.1, we have
efs(BJ}) = 2. Labeling the n-sided external face by label 2 and all the rests by label 1, then all face-weights
are distinct. Thus, efs(B) = 2.

Now for m > 2, let z = efs(B,r). Since every internal face of Bj shares 2 common vertices, a = n,

2a+|F|-2 2n+m-1 . 2n+m-17] .
Ll ] = [ ] Consider that z = [ ] 1
2b-1 4n-5 4n->5

b=2n—-2,andn, > 1, by Lemma 2.1, we have z > [
not valid, since for m < 2n — 4, the maximum label is 1.

Moreover, since By has at least 2 face-weights which are contributed by the same number of labels, there must
4n+m-7
4n—5 ]

be 2 faces of the same weight. Then the divisor must be at least 4n — 4. Thus we have z > [
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Next, to show that z is an upper bound for entire face irregularity strength of B}, let Bjt,m = 1,n = 3, be the
2-connected plane graph with an n-sided internal face fi,, m —1 (2n — 2)-sided internal faces and an
external n-sided face fJ%;.

Let my = [%] and m, = m —my. Our goal is to have m, distinct even face-weights and m, distinct odd
face-weights such that m (2n — 2)-sided face-weights are distinct and form an arithmetic progression.

an+m-7

Letz = [ ] It can be seen that Bj; has m different paths of length (n — 1). Next, we divide m; paths
into S = [m] parts, where part s-th consists of (4n — 5) paths, for 1 < s < § — 1, and part S-th consists of

r, =my — (§ —1)(4n — 5) paths. Also, we divide m, paths into T = [Ti—:] parts, where the first part

consists of (4n — 6) paths, part t-th consists of (4n — 5) paths, for2 <t < T — 1, and part T-th consists of
r, =my, — (T — 1)(4n — 5) paths.

Let

VBE) = {x, y, u()”, u@®, v®)” #v(D¥, v(MPY |[1<s<S-1,1<t<T-1,1<i<4n-
5,1S]S2n—2,1§k£r1,1SlSr2};

E(Bp) = {xy} U
fu)! = xus)? u@® 7™ = u@E? 2 u@G)?, uE) P =u@E) ty1<s<S-1, 1<
i<4n-5 2<j<n-2}u
w®t =xu®? u®? ™" = u@®??u®), uS)M P =u@®)" Myl <i<n, 2<j <
n—2}u
vt = xv®? v =v®Y v, v = vty | 1<t<T,1<i<4n-
52<j<n-2}u
v} = xw(T)?, v = v (), (M3 = (MY |1<i<1,2<j <
n-— 2}'

FBR) = {foxe, fine w2 u®i 2% v®" 2 #v(1)" 2, v(Mi"?|1<s<S-1,1<t<T-
L,L1<i<4n-51<k<n, 1<Il<n}

Where f2, is bounded by cycle xv(1)3v(1)3 - v(1)3" *yx

f. is bounded by cycle xu(1)u(1)7 -+ u(1)5" *yx

u(s)?™% is bounded by cycle xu(s)?u(s)f - u(s)™ *yu(s)? *u(s)? ¢ -u(s)? x, for
1<s<S,i+mn;

u(S)Z2 is bounded by cycle xu(S)7, u(S)7, - u(S)F*yv(T)Z*v(T)F ¢ - v(T)Z,x; and

v(£)?"? is bounded by cycle xv(t)?v(t)} - v(t)?" *yv(t)2 v ¢ v(t)F  x, for
1<t<T,i#m;

Our notations above imply that, without losing generality, for v(t){ ,welet2 <i<4n—5fort = 1. It means
that there is no vertex or edge or face v(l){.

Now, we divide our labeling of B;} into 2 cases as follows:

Case 1.For odd m with 2 <r, < 2n — 1 or even m;

Define an entire k-labeling A : VUE UF — {1,2,---,k} of B} as follows.
Alx) = 2y) = Axy) = Ufex) = 1

A(fine) = 25
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(2s—1 for1<s<S,1<i<min{r, 2n—2}and1<j<2n—-i-1
for1<s<S1<i<min{r, 2n—2}and2n—i <j<2n-2

[ 2s
A(u(s)!) =425 for1<s<S$2n—1<i<min{r, 4n—5}and 1<) < 2n—2["‘22"+2J —2

i-2n+2
2

L25+1 for1 <s<85,2n—1<i<min{r, 4n—5}and2n—2[ J—lSjSZn—Z

2t—1, for1<t<T,1<i<min{rp, 2n—-2}and1<j<2n-—i-2;
2t, for1<t<T,1<i<min{r,, 2n—2}and2n—i—1<j<2n-3;

2t, forl<t<T,2n—1<i<min{r, 4n—5}and13j32n—2[$J—3;
,1(,;@)924 2t+1, for1<t<T,2n—1<i<min{r, 4n—5}and2n—2l$
2t—2, forl1<t<T,i=1landj=2n-2;
2t—1, for1<t<T,2<i<min{r,, 2n—1}andj =2n —2;

2t, for1<t<T-1,2n<i<4n—-5andj=2n-2.

2t, fort=T,2n—1<i<min{r, — 1, 4n—6}and j = 2n — 2

|-2<j<am-3

Case 2.Forodd mwithry, =lor2n<r, <4n->5;

Define an entire k-labeling A* : VUE UF — {1,2,--+, k} of B}, as follows.
@) =2Q) =2 (xy) =1 (foxe) = 1;

A (fme) = 2
2*(u(s)]) = Mu(s)))
2T -2, forr,=1,t=T, i=1,j=1;
2T -1, forr,=1, t=T—1, i=4n—5, j = 2n— 2;

Mv®))+1, forryodd,2n<r, <4n—5,t=T, i=r, j=1;

2 (v(t){) = /’l(v(t){_) -1, fornnodd,2n<r,<4n-5,t=T,i=r,—-1, j=2n-2;
Av(@®)])—1, forrmyeven,2n<r, <4n-5,t=T, i=r—1, j=2n-3;
AMv®))+1, forryeven,2n<r,<4n—5t=T, i=r,—1, j=2n—2;

M(v(t){ ), for otherwise.

It is easy to check that the labeling A is an entire z-labeling. Then we have evaluate the face —weights set
WED), wrl),w(u(s)?2),w(v(®)™2)|1<s<S, 1<t <T, 1<i<4n—5}as follows.

W(feralct) =2n+1,;
w(fire) =2n+2;

{(25—1)(4n—5)+2i, for1<s<S-1,1<i<4n-75;
one2y _ ) (2s—=1)(4n —5) + 2i, fors=85—-1,1<i<r;
w(u)i"™*) = (2s —1)(4n —5) + 214, forevenm, s=S—1,i =1;
(2s—1)(4n—-5)+2r,—1, foroddm, s=S—-1,i=r.
W(v(t)Zn_z)_{(2t—1)(4n—5)+2i+1, for1<t<T-1,1<i<4n—5;
¢ " l@T-1D(An—-5) +2i+1, fort=T,1<i<nr,—1

Since all face-weights are distinct, then A is a face irregular entire z-labeling of Bj, where m is odd with

2<r1r,<2n-—1ormiseven; and A" is a face irregular entire z-labeling of B} where m is odd with r, =1

an+m-—7
or2n <r, <4n —>5. Thus, z = [ pr—

] is the entire face irregularity strength of B),. m

Note that our result in Theorem 2.2 show that the ef's(B;p) is greater than the lower bound in Lemma 2.1.

Hence, we propose the following open problem.
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Open Problems

1. Find a class of graph which satisfy a condition where the lower bound in Lemma 2.1 is sharp;
2. Generalize the lower bound for any condition.
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