THE TOTAL IRREGULARITY STRENGTH OF SOME COMPLETE BIPARTITE GRAPHS

Pranaya D. M. Taihuttu*, Meilin I. Tilukay*, F. Y. Rumlawang, and Z. A. Leleury
Department of Mathematics, Faculty of Mathematics and Natural Sciences Pattimura University
Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon, Indonesia
*Corresponding Author: dhariataihuttu@yahoo.com; meilin.tilukay@fmipa.unpatti.ac.id

Abstract

This paper deals with the total irregularity strength of complete bipartite graph $K_{m, n}$ where $2 \leq m \leq 4$ and $n>m$.

Keywords: Complete bipartite graph; Total irregularity strength; Totally irregular total labeling

1. INTRODUCTION

Let a graph G considered here be a finite, simple, and undirected graph with vertex set $V(G)$ and edge set $E(G)$. For any total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$, the weight of a vertex v and the weight of an edge $e=x y$ are defined by $w(v)=f(v)+$ $\sum_{u v \in E} f(u v)$ and $w(x y)=f(x)+f(y)+f(x y)$, respectively. If all the vertex weights under total labeling f are distinct, then f is called a vertex irregular total k-labeling, and if all the edge weights under total labeling f are distinct, then f is called an edge irregular total k-labeling. The minimum value of k for which G has a vertex (or an edge) irregular total labeling f is called the total vertex (or edge, resp.) irregularity strength of G and is denoted by $\operatorname{tvs}(G)$ (or tes (G), resp.) [1]. Baca, Jendrol, Miller, \& Ryan in [1] gave the boundary for the $\operatorname{tvs}(G)$ that for every (p, q)-graph G with minimum degree $\delta(G)$ and maximum degree $\Delta(G)$, as follow.
$\left\lceil\frac{p+\delta(G)}{\Delta(G)+1}\right\rceil \leq \operatorname{tvs}(G) \leq p+\Delta(G)-2 \delta(G)+1 ;$
and for the total edge irregularity strength of graph G, as follow.

$$
\begin{equation*}
\left\lceil\frac{|E(G)|+2}{3}\right\rceil \leq \text { tes }(G) \leq|E(G)| . \tag{1.2}
\end{equation*}
$$

Later, Jendrol et al. [2] determined the total edge-irregular strengths of a complete bipartite graph $K_{m, n}$, where $m, n \geq 2$, as follow.

$$
\begin{equation*}
\operatorname{tes}\left(K_{m, n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil . \tag{1.3}
\end{equation*}
$$

For further results on tvs and tes, one can refer to [3].
In 2012, Marzuki, Salman, and Miller [4] introduced a new parameter by combining the vertex irregular total labeling and the edge irregular total labeling. A total k-labeling $f: V \cup E \rightarrow\{1,2, \ldots, k\}$ of G is called a totally irregular total k-labeling if for any pair of vertices x and y, their weights $w(x)$ and $w(y)$ are distinct and for any pair of edges $x_{1} x_{2}$ and $y_{1} y_{2}$, their weights $w\left(x_{1} x_{2}\right)$ and $w\left(y_{1} y_{2}\right)$ are distinct. The minimum value k for which a graph G has totally irregular total labeling, is called the total irregularity strength of G, denoted by $t s(G)$. They [4] have proved that for every graph G,

$$
\begin{equation*}
t s(G) \geq \max \{\operatorname{tes}(G), t v s(G)\} \tag{1.4}
\end{equation*}
$$

and determined the exact value of total irregularity strength of paths and cycles. For path P_{n} of n vertices,

$$
t s\left(P_{n}\right)= \begin{cases}\left\lceil\frac{n+2}{3}\right\rceil, & \text { for } n \in\{2,5\} \tag{1.5}\\ \left\lceil\frac{n+1}{2}\right\rceil, & \text { otherwise }\end{cases}
$$

In [5], Ramdani and Salman determined the $t s$ of several cartesian product graphs. Later, Ramdani et al. [6] determined the $t s$ for gear graphs, fungus graphs, $t s\left(F g_{n}\right)$, for n even, $n \geq 6$; and for disjoint union of stars. Tilukay et al. in [7] determined the $t s$ of fan, wheel, triangular book, and friendship graphs.

The result of the total irregularity strength of star graph $K_{1, n}$ is given by Indriati, et al. in [8]. They [8] obtained that for any positive integer $n \geq 3$,
$t s\left(K_{1, n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.

Recently, Tilukay et al. in [9] determined the $t s$ of complete graph K_{n} and complete bipartite graph $\left(K_{n, n}\right)$. They [9] obtained that for any positive integer $n \geq 2$,
$t s\left(K_{n, n}\right)=\left\lceil\frac{n^{2}+2}{3}\right\rceil$.
Completing the result above, in this paper, we give some more results by determining the total irregularity strength of complete bipartite graph $K_{m, n}$ where $2 \leq m \leq 4$ and $n>m$.

2. MAIN RESULT

Let $K_{m, n}$, where $m, n \geq 0$, be a complete bipartite graph with partite sets of cardinalities m and n. For simplifying the drawing of $K_{m, n}$ together with labels, let the labeling $f: V\left(K_{m, n}\right) \cup E\left(K_{m, n}\right) \rightarrow\{1,2, \ldots, k\}$ represented by an $(m+1) \times(n+1)$ matrix $M_{f}\left(K_{m, n}\right)=\left(\alpha_{i j}\right)$, where $\alpha_{11}=0$; first column $\alpha_{i 1}, i \neq 1$ consists of labels of m vertices in second partite; first row $\alpha_{1 i}, i \neq 1$ consists of labels of n vertices in first partite; and the rests consist labels of edges joining these vertices.

Theorem 1. Let $K_{m, n}$ be a complete bipartite graph with $2 \leq m \leq 4$ and $n>m$. Then

$$
t s\left(K_{m, n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil .
$$

Proof. Since $\left|V\left(K_{m, n}\right)\right|=m+n,\left|E\left(K_{m, n}\right)\right|=m n, \delta(G)=m, \Delta(G)=n$ with $m \leq n$ by (1.1), (1.2), (1.3) and (1.4), we have
$t s\left(K_{m, n}\right) \geq\left\lceil\frac{m n+2}{3}\right\rceil$.
For the reverse inequality, we construct an irregular total labeling $f: V \cup E \rightarrow$ $\{1,2, \ldots, k\}$ which will be divided in two cases. Let $k=\left\lceil\frac{m n+2}{3}\right\rceil$.
Case 1. For $m=2$;
Subcase 1.1. For $m=2$ and $n \in\{3,4,5\}$;
The labeling are shown in Figure 1. It is easy to check that all edge-weights form arithmetic progression and all vertex-weights are distinct.

Figure 1. (a) Totally irregular total 3-labeling of $K_{2,3}$, (b) Totally irregular total 4-labeling of $K_{2,4}$, and (c) Totally irregular total 4-labeling of $K_{2,5}$

Thus, we have $M_{f}\left(K_{2,3}\right)=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 2 & 3 & 3 & 3\end{array}\right) ; M_{f}\left(K_{2,4}\right)=\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 4 & 4 & 4 & 4\end{array}\right)$; and $M_{f}\left(K_{2,5}\right)=\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 3 & 4 \\ 1 & 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 3 & 3 & 4 & 4\end{array}\right)$.

Subcase 1.2. For $m=2$ and $n \geq 6$;
Let $V\left(K_{2, n}\right)=\left\{u_{i} \mid 1 \leq i \leq n\right\} \cup\left\{x_{1}, x_{2}\right\}$ and $E\left(K_{2, n}\right)=\left\{u_{i} x_{1}, u_{i} x_{2} \mid 1 \leq i \leq n\right\}$.
Define
$f\left(u_{i}\right)= \begin{cases}i, & \text { for } 1 \leq i \leq k ; \\ i-n+k, & \text { for } k+1 \leq i \leq n ;\end{cases}$
$f\left(x_{1}\right)=1$;
$f\left(x_{2}\right)=k ;$
$f\left(u_{i} x_{1}\right)= \begin{cases}1, & \text { for } 1 \leq i \leq k ; \\ n-k+1, & \text { for } k+1 \leq i \leq n ;\end{cases}$
$f\left(u_{i} x_{2}\right)= \begin{cases}n-k+2, & \text { for } 1 \leq i \leq k ; \\ 2(n-k+1), & \text { for } k+1 \leq i \leq n .\end{cases}$

It is easy to check that the largest label is k.
Next, we verify the edge-weight and the vertex-weight set as follows.
For the edge-weight,

$$
\begin{array}{ll}
w\left(u_{i} x_{1}\right)=i+2, & \text { for } 1 \leq i \leq n \\
w\left(u_{i} x_{2}\right)=n+i+2, & \text { for } 1 \leq i \leq n
\end{array}
$$

It can be checked that the weights of the edges under f are $3,4, \cdots, m n+2$.
For the vertex-weight,
$w\left(u_{i}\right)= \begin{cases}n-k+i+3, & \text { for } 1 \leq i \leq k ; \\ 2 n-2 k+i+3, & \text { for } k+1 \leq i \leq n ;\end{cases}$
$w\left(x_{1}\right)=(n-k)(n-k+1)+k+1 ;$
$w\left(x_{2}\right)=k(n-k+3)+(2 n-2 k)(n-k+1)$.
It can be checked that there are no two vertices with same weight.

Case 2. $m=3$;
Subcase 2.1. For $m=2$ and $n \in\{5,6\}$;
The labeling is given in matrices below.

$$
M_{f}\left(K_{3,5}\right)=\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5 \\
2 & 1 & 2 & 3 & 4 & 5 \\
6 & 6 & 6 & 6 & 6 & 6
\end{array}\right) \text { and } M_{f}\left(K_{3,6}\right)=\left(\begin{array}{lllllll}
0 & 1 & 2 & 4 & 5 & 6 & 7 \\
1 & 1 & 2 & 2 & 3 & 4 & 5 \\
2 & 1 & 2 & 2 & 3 & 4 & 5 \\
7 & 7 & 7 & 6 & 6 & 6 & 6
\end{array}\right)
$$

It is easy to check that all edge-weights form a consecutive sequence $3,4, \cdots, 3 n+2$ and all vertex-weights are distinct.

Subcase 2.2. For $\boldsymbol{m}=3$ and $\boldsymbol{n} \notin\{5,6\}$;
Let $V\left(K_{3, n}\right)=\left\{u_{i}, v_{j} \mid 1 \leq i \leq b\right.$ and $\left.1 \leq j \leq a\right\} \cup\left\{x_{i}, y_{1} \mid 1 \leq i \leq 2\right\}$ and

$$
E\left(K_{3, n}\right)=\left\{u_{i} x_{j} \mid 1 \leq i \leq b \text { and } 1 \leq j \leq 2\right\} \cup\left\{v_{i} x_{j} \mid 1 \leq i \leq a \text { and } 1 \leq j \leq 2\right\} \cup
$$

$$
\left\{u_{i} y_{1} \mid 1 \leq i \leq b\right\} \cup\left\{v_{i} y_{1} \mid 1 \leq i \leq a\right\}
$$

Define,

$$
\begin{array}{ll}
f\left(u_{i}\right)=i & \text { for } 1 \leq i \leq b \\
f\left(v_{j}\right)=k-(a-j) & \text { for } 1 \leq j \leq a
\end{array}
$$

$$
\begin{array}{ll}
f\left(x_{i}\right)=i & \text { for } 1 \leq i \leq 2 \\
f\left(y_{1}\right)=k & \\
f\left(u_{i} x_{j}\right)=i & \text { for } 1 \leq i \leq b \text { and } 1 \leq j \leq 2 \\
f\left(v_{i} x_{j}\right)=2 b+a-k+i & \text { for } 1 \leq i \leq a \text { and } 1 \leq j \leq 2 \\
f\left(u_{i} y_{1}\right)=k & \text { for } 1 \leq i \leq b \\
f\left(v_{j} y_{1}\right)=k-1 & \text { for } 1 \leq j \leq a
\end{array}
$$

It is easy to check that the largest label is k.
For the edge-weight,
$w\left(u_{i} x_{j}\right)=2 i+j \quad$ for $1 \leq i \leq b$ and $1 \leq j \leq 2$
$w\left(v_{i} x_{j}\right)=2(b+i)+j \quad$ for $1 \leq i \leq a$ and $1 \leq j \leq 2$
$w\left(u_{i} y_{1}\right)=2 k+i \quad$ for $1 \leq i \leq b$
$w\left(v_{j} y_{1}\right)=3 k-(a-j)-1$ for $1 \leq j \leq a$
It can be checked that the weights of the edges under f are $3,4, \cdots, m n+2$.
For the vertex-weights,

$$
\begin{array}{ll}
w\left(u_{i}\right)=3 i+k & \text { for } 1 \leq i \leq b \\
w\left(v_{j}\right)=4 b+a+3 j-1 & \text { for } 1 \leq j \leq a \\
w\left(x_{i}\right)=i+\frac{(1+b) b}{2}+\frac{(4 b+3 a-2 k+1) a}{2} & \text { for } 1 \leq i \leq 2 \\
w\left(y_{1}\right)=k(n+1)-a &
\end{array}
$$

It can be checked that there are no two vertices with same weight.

Case 3. $m=4$;

Subcase 3.1. For $m=4$ and $n=14$;
The labeling is given in matrix below.

$$
M_{f}\left(K_{4,14}\right)=\left(\begin{array}{ccccccccccccccc}
0 & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 10 & 12 & 14 & 16 & 18 & 20 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 8 & 8 & 8 & 8 & 8 & 8 \\
2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 8 & 8 & 8 & 8 & 8 & 8 \\
19 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 18 & 18 & 18 & 18 & 18 & 18 \\
20 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 18 & 18 & 18 & 18 & 18 & 18
\end{array}\right)
$$

Subcase 3.1. For $m=4$ and $n \neq 14$;
Let $a=\left[\frac{k}{2}\right\rceil$ and $b=n-\left\lceil\frac{k}{2}\right\rceil$ for $5 \leq n \leq 8,13 \leq n \leq 18$ or $n \geq 25$; let $a=\left\lfloor\frac{n}{2}\right\rfloor$ and $b=$ $\left[\frac{n}{2}\right]$ for $9 \leq n \leq 12$ and $19 \leq n \leq 24$.
Let
$V\left(K_{4, n}\right)=\left\{u_{i}, v_{j} \mid 1 \leq i \leq a\right.$ and $\left.1 \leq j \leq b\right\} \cup\left\{x_{i}, y_{j} \mid 1 \leq i \leq 2\right.$ and $\left.1 \leq j \leq 2\right\}$ and
$E\left(K_{4, n}\right)=\left\{u_{i} x_{j} \mid 1 \leq i \leq a, 1 \leq j \leq 2\right\} \cup\left\{v_{i} x_{j} \mid 1 \leq i \leq b, 1 \leq j \leq 2\right\} \cup$
$\left\{u_{i} y_{j} \mid 1 \leq i \leq a, 1 \leq j \leq 2\right\} \cup\left\{v_{i} y_{j} \mid 1 \leq i \leq b, 1 \leq j \leq 2\right\}$.
Define
$f\left(u_{i}\right)=2 i-1, \quad$ for $1 \leq i \leq a ;$
$f\left(v_{i}\right)=k-2 b, \quad$ for $1 \leq i \leq b ;$
$f\left(x_{i}\right)=i, \quad$ for $1 \leq i \leq 2 ;$
$f\left(y_{i}\right)=k+i-2, \quad$ for $1 \leq i \leq 2 ;$
$f\left(u_{i} x_{j}\right)=1, \quad$ for $1 \leq i \leq a$ and $1 \leq j \leq 2 ;$
$f\left(v_{i} x_{j}\right)=2 n-k, \quad$ for $1 \leq i \leq b$ and $1 \leq j \leq 2 ;$
$f\left(u_{i} y_{j}\right)=2 n-k+3, \quad$ for $1 \leq i \leq a$ and $1 \leq j \leq 2 ;$
$f\left(v_{i} y_{j}\right)=4 n-2 k+2$, for $1 \leq i \leq b$ and $1 \leq j \leq 2$.
It is easy to check that the largest label is k.
For the edge-weight,
$w\left(u_{i} x_{j}\right)=2 i+j, \quad$ for $1 \leq i \leq a$ and $1 \leq j \leq 2 ;$
$w\left(v_{i} x_{j}\right)=2 a+2 i+j, \quad$ for $1 \leq i \leq b$ and $1 \leq j \leq 2 ;$
$w\left(u_{i} y_{j}\right)=2 n+2 i+j, \quad$ for $1 \leq i \leq a$ and $1 \leq j \leq 2 ;$
$w\left(v_{i} y_{j}\right)=4 n-2 b+2 i+j, \quad$ for $1 \leq i \leq b$ and $1 \leq j \leq 2$.
It can be checked that the weights of the edges under f are $3,4, \cdots, 4 n+2$.
For the vertex-weights,
$w\left(u_{i}\right)=4 n-2 k+2 i+7, \quad$ for $1 \leq i \leq a ;$

$$
\begin{array}{lr}
w\left(v_{i}\right)=12 n-5 k-2 b+2 i+4, & \text { for } 1 \leq i \leq b \\
w\left(x_{i}\right)=a+b(2 n-k)+i, & \text { for } 1 \leq i \leq 2 \\
w\left(y_{j}\right)=a(2 n-k+3)+b(4 n-2 k+2)+k+j-2, & \text { for } 1 \leq j \leq 2
\end{array}
$$

It can be checked that $w\left(u_{i}\right)$ (and $w\left(v_{j}\right)$) under f form an arithmetic progression with difference 2 while $w\left(x_{i}\right)$ (and $w\left(y_{j}\right)$) under total labeling f form an arithmetic progression with difference 1 , and there are no two vertices with same weight.

Based on the results of four cases, we can conclude that f is the totally irregular total $\left\lceil\frac{m n+2}{3}\right\rceil$-labeling. Thus, for $2 \leq m \leq 4$ and $n>m$, we obtained:

$$
\begin{equation*}
t s\left(K_{m, n}\right) \leq\left\lceil\frac{m n+2}{3}\right\rceil . \tag{2.2}
\end{equation*}
$$

By, (2.1) and (2.2), we have $t s\left(K_{m, n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil$, for $2 \leq m \leq 4$ and $n>m$.

3. CONCLUSION

By Theorem 1, we can conclude that for $2 \leq m \leq 4$ and $n>m$,

$$
t s\left(K_{m, n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil .
$$

REFERENCES

[1] M. Bača, S. Jendroĺ, M. Miller, M., J. Ryan, On Irregular Total Labelings. Discrete Mathematics, 307: 1378-1388, 2007
[2] S. Jendroĺ, J. Miskuf, R. Sotak, Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs, Discrete Mathematics, 310: 400-407, 2010
[3] J. A. Galian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics \#DS6, 2016
[4] C. C. Marzuki, M. Salman, A. N., M. Miller, On The Total Irregularity Strengths of Cycles and Paths, Far East Journal of Mathematical Sciences, 82(1): 1-21, 2013
[5] R. Ramdani, M. Salman, A. N., On the total irregularity strength of some Cartesian product graphs, AKCE Int. J. Graphs Comb., 10, No. 2: 199-209, 2013
[6] R. Ramdani, M. Salman, A. N., H. Assiyatun, A. Semaničová-Feňovčiková, M. Bača, Total Irregularity Strength of Three Family of Graphs, Math.Comput.Sci, 9: 229-237, 2015
[7] M. I. Tilukay, A. N. M. Salman, E. R. Persulessy, On the Irregularity Strength of Fan, Wheel, Tringular Book, and Friendship Graphs, Procedia Computer Science 74: 124-131, 2015
[8] D. Indriati, Widodo, I. E. Wijayanti, K. A. Sugeng. On total irregularity strength of Star Graphs, Double-Stars, and Caterpillar, AIP Conference Proceedings 1707(1): 020008(1)020008(6), 2016
[9] M. I. Tilukay, B. P. Tomasouw, F. Y. Rumlawang, A. N. M. Salman, The Total Irregularity Strength of Complete Graphs and Complete Bipartite Graphs, Far East Journal of Mathematical Sciences, 102(2): 317 - 327, 2017

