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Abstract 

 
 Characterization of ray trajectories in nonhomogeneous media is based on a traditional 

Eikonal equation valid in the region of geometrical optics, whereby the vector calculus and 

geometry are require fairly extensive. In this paper, we introduce a simple correspondence 

rule, and a few intuitive guidelines for relating rays to waves, an equivalent set of trajectory 

equations can be obtained. Our approach results in the Eikonal equations for the space 

evolution of optical fiber rays which are expressed in terms of the mode analysis invariants, 

azimuthal mode number, and optical waveguide propagation phase constant. It can expand 

application areas such as sensors and lightwave telecommunications. 
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I. INTRODUCTION 

 

      An extensive body of literature exists for 

both wave and ray characterization of optical 

fibers. It is generally accepted that exact 

analityc waveguide solutions exist for a select 

number of specific index profiles. The exact 

waveguide solutions are frequently derived for 

step index fibers in intermediate level optical 

fiber texts [1], [2]. In the general case of 

graded index fibers the problems is not 

analytically tractable without approximation 

[1]. The most common technique for the 

analysis of graded index fibers is based on the 

Wentzel-Kramer-Brillouin (WKB) 

approximation [3]. It is possible to show that 

the first-order WKB approximation is 

equivalent to the results produced from a 

simple ray model [4]. 

Despite the mathematic importance of 

having an exact waveguide solution in an 

optical fiber, the propagation characteristics 

can be difficult to visualize. It is not surprising 

that an alternative approach to treating optical 

fibers, based on the Eikonal ray approach, 

which in turn is based on Fermat’s extremum 

principle [5], has proven to be extremely useful 

in explaining effects which take place in 

optical fibers [2]. For example, application of 

such techniques to the prediction of bending 

losses in optical fibers has appeared in the 

literature [6]. In addition, achromatic modal 

dispersion effects have been predicted with ray 

models [7]. 

Recently, an approach based on a simple 

correspondence principle between waves and 

rays has been proposed as a substitute for the 

first-order WKB approach of counting modes 

[8]. This  

 

 

 

 

 

correspondence principle has been used to 

qualitatively demonstrate that there should be a 

direct association between the mode numbers 

in an optical fiber and the ray trajectories. The 

main focus of this brief report is to provide a 

simple approach for deriving the three 

dimensional (3D) dynamic trajectory equations 

for optical fibers using this correspondence 

principle. We have found that the application 

of these concepts in the classroom has proven 

useful in explaining principles of wave 

propagation within optical fibers. In particular, 

the physical interpretation of optical fiber 

modes as rays, which is emphazed here, 

complements the more rigorous waveguide 

analysis because it facilitates the ability to 

visualize modes. With that visualization comes 

a better physical understanding of many of the 

mode-dependent effects such as bending losses 

and modal dispersion. 

 
II. THEORETICAL BACKGROUND 

 

     Starting from the Hemholtz equation which 

is the phasor form of the wave equation in 

linear, isotropic source-free homogeneous 

media, we have  

 

  0)(22  Erk


                         (1) 

 

where )(rk


 is the wavenumber and E


 is the 

electric field. It is noted that this equation is 

only approximately valid in a graded index 

fiber. Consistent with the form given in (1) se 

assumed that  
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where k  is the vacuum wavenumber, )(rn  is 

the index of refraction, and r ,  and z are 

cylindrical coordinates needed to describe 

points in the fiber. Following a standar 

procedure [1] in waveguide analysis for 

circularly symmetric fibers it is assumed  

 

zE zjjv

v erFzr   )(),,(               (3) 

 

where )(rFv  is the radial solution to source-

free homogeneous Hemholtz equation,   is 

the waveguide phase constans of the 

waveguide, and v  is the azimuthal mode 

number, which is forced to be an integer due to 

periodic boundary conditions. )(rF  is the 

radial solution to (1). In a step index fiber, the 

exact waveguide solution for )(rF   can be 

expresed on terms of Bessel function [1], [3]. 

To be precise, the source-free homogenous 

Hemholtz equationcannot exactly predict the 

waveguide solution in the graded index optical 

fiber. However, within the regime of 

geometrical optics the discrepancy is 

guaranteed to be small [3].  

It is generally accepted that an arbitary 

electromagnetic field has an angular plane 

wave representation [9]. The view-point being 

developed her is based on the interpretation 

that only a plane wave can be described by a 

single ray and the direction of propagation of 

an optical ray is the propagation vector. A 

simple correspondence rule for plane waves [8]  
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Describes the action of the Del operator in 

terms of an equivalent algebraic substitution 

involving the wavevector. We proceed to apply 

(4) to the   and z dependencies of (3). After 

application of tile grad operator in cylindrical 

coordinates given by  
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it follows from (5) that 
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which in combination with (4) leads to  

 

r

v
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a correspondence rule for the   component 

of the propagation vector. Similarly, from (5)  

  

zzz EjEj  )(


                             (8) 

 

and again from (4) 

 

zk                                        (9) 

 

which is the z-component correspondence rule. 

It is noted from (3) that the correspondence 

rule (4) applies only to the   and the z 

components. 

For radially symmetric index profiles, 

Snell’ law requires that   and  are constants 

of the motion. It is known that the partial fields 

associated with incident, transmitted, and 

reflected waves at a boundary must exhibit 

temporal and spatial phase synchronization. 

This requires that the tangential component of 

the propagation vector is continuous across 

boundaries [10]. In particural, under the 

assumption of a radially symmetric profile the 

surfaces of constant index of refraction are 

cylinders. Applyng the above rule this requires 

for the   component of the propagation 

vector. 

 

21  kk                                            (10) 

 

and therefore according to (7) .21    

Similiary, for the z  component of the 

propagation vector  

 

21 zz kk                                           (11) 

 

and therefore according to (9), .21    

To put this in perspective let 

 cos)(rkn , which reflects the 

interpretation that the propagation constant   

is the z component of the propagation vector 
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seen on Fig. 1. Then (11) is directly equivalent 

to more commonly seen optic form for Snell's 

law 2211 coscos  nn  . 

Using the relation between the propagation 

vector and its component, it follow fi'om (7) 

and (8) that the radial component of the 

propagation can be expressed as  
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Fig. l. Geometry defining location and orientation of 

the   wavevector  in an optical fiber.   

 

The space dependence of the wave number is 

defined in terms of the index of refraction  

 

)()( rkrk n                                 (13) 

 

where k  is the vacuum wavenumber. Both +/- 

roots of (8) are required to characterize a full 

cycle of the ray trajectory.  

 

III. RAY TRAJECTORY EQUATIONS IN 

CYLINDRICAL COORDINATES 

 

      In this section, the equations which 

describe the ray trajectories will be derived. 

The basic principle involved is that in isotropic 

media the wavevector describes the normal to 

the wavefront. Making the natural association 

between wavefront normal and rays, the 

resulting principles is the ray trajectory 

tangents are parallel to the wavevector.  

With reference to Fig. 1, the orientantion of 

the wavector wavevector )(rk  is defined in 

terms of  and  . It follows that  

 

 sinsin)(rkk                           (14) 

cos)(rkk z                                    (15) 

   

and 

 cossin)(rkkr                          (16) 

 

The incremental line variation in the ray 

trajectory can be defined as  

 

    erdedredzd rz
ˆˆˆ 


            (17) 

 

The wavevector, defined by the cylindrical 

components (14)-(16), is perpendicular to the 

wavefront of constant phase the therefore 

tangent to the trajectories. The incremental 

component ,,,drd and dz are tangential to 

the wavevector defined by component (7), (9), 

and (12), and therefore by comparison with 

(14)-(16) 

 

cosddz                                      (18) 

 cossinddr                             (19) 

 

and 

 

 sinsindrd                            (20) 

 

defined the ray tangent. 

Through combinations of (9), (12), (15), 

(16), (18), And (19) we have that 
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Working similarly with the   component 

of the ray, combination of (14), (16), (19), and 

(20) gives 

2
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Which is the evolution for the  component of 

the ray. Equations (21) and (22), which 

describe the ray trajectories, are shown to be in 

agreement with the Eikonal solution [2] in the 

next section. Unlike the standard Eikonal 

evolution equations, (21) and (22) are 

expressed in terms of the azimuthal mode 

number and the waveguide phase constant. The 

developments in this section are limited 

because little insighs is provided as to what, if 
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any, are the constraints on allowed values of 

 and   for and optical fiber.  

 

IV.  A COMPARISON TO EIKONAL 

ANALYSIS AND APPLICATION 

PERSPECTIVE 

 

The proposed evolution equations that 

describe the ray trajectories in the fiber optic 

according to the EikonaI approach [2] are  
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and 
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where E dan  are constant of the motion 

defined as 

 

ds

dz
rnE )(                                     (25) 

and  

 

    
dz

d
r

2                                        (26) 

 

 

with s  being the distance of the point 

measured along the ray trajectory. All other 

parameters appearing in (23)-(26) are defined 

in the previous discussion and in Fig 1. In what 

follows we demonstrate the relation between 

the Eikonal constants of motion and the 

invariants  and  . 

From the definition of d defined by (17) it 

follows that 

 

dds                                                  (27) 

 

By substituting (27) and (18) into (25), we 

have 

 

cos)(rnE                                     (28) 

 

which, through combinations of (11) and (15), 

becomes 

 

k
E


                                                  (29) 

 

which relates the phase constant   to Eikonal 

constant E. Also substitution of (19) and (20) 

into (26) gives 

 

 =




cos

sinsin 
r                                    (30) 

 

which, when combined with (7), (9), (14), and 

(15), leads to 

 




                                                (31) 

 

Equation (31) relates the azimuthal mode 

number  and the phase constant   to the 

Eikonal constant  . 

     First substitution of (29) and (30) into 

(23) leads to (21). Second substitution of (31) 

into (24) and (31) into the form 

 

                      
dzd

dzdr

/

/


                        (32) 

 

leads to (22). Therefore, there is an exact 

agreement (32) between the analysis 

presented in the previous section and the 

Eikonal analysis. More importantly, the 

proposed analysis connects the standard 

Eikonal invariants to the optical fiber mode-

analysis invariants, without requiring extensive 

vector calculus. Because of this link, the 

numeric implementation of the model can 

provide valuable physical insight for the fiber 

optic application areas such as sensors or 

lightwave telecommunications [11]. 

 

V. CONCLUSION 

 

      The main point of this paper on optical 

fiber ray trajectories is to demonstrate the 

existence of a pedagogically attractive 

alternative to more formal methods such as 

WKB or Eikonal analysis. An important 

feature of the method presented is that it links 

the cylindrical waveguide invariants to the ray 

trajectories. This link can expan sensors and 

lightwave telecommunications application at 

near the future. 
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