ANALISIS KONTRIBUSI KOMPONEN TEKNOLOGI DALAM USAHA BUDIDAYA RUMPUT LAUT DI KABUPATEN SERAM BAGIAN BARAT
Daniel Bunga Paillin

EKSPETASI PROFIT KAYU OLAHAN DENGAN MEMPERTIMBANGKAN VARIABILITAS DIMENSI PRODUK
Johan Marcus Tupan

FAKTOR-FAKTOR DOMINAN YANG MEMPENGARUHI TINGKAT KESELMATAN DAN KESEHATAN KERJA TERHADAP KINERJA KARYAWAN (STUDI PADA PT. “X” CABANG MALUKU)
Novita Irma Diana Magrib

ANALISIS PENGAMBILAN KEPUTUSAN PEMILIHAN LOKASI PEMBANGUNAN GRAVING DOCK DI KOTA AMBON DENGAN METODE ANALYTICAL HIERARCHY PROCESS
V.O Lawata A. J. Sutrisno, G. R. Latuhihin

PENENTUAN MACIMUM ACCEPTABLE WEIGHT LIMIT (MAWL) UNTUK DURASI KERJA SINGKAT DENGAN PENDEKATAN BIOMEKANI
Rapiah Sarfa Marasabessy

PERBAIKAN KUALITAS KERJA DENGAN MENERAPKAN PENDEKATAN ERGONOMIC MENINGKATKAN PRODUKTIFITAS BURUH ANGKAT ANGKUT TRADISIONAL DI PASAR BADUNG DENPASAR
Robert Hutagalung

ALTERNATIF PENANGGULANGAN TENGKULAK DALAM USAHA BUDIDAYA RUMPUT LAUT DI KABUPATEN SERAM BAGIAN BARAT
Daniel Bunga Paillin Taufik Talib

THE MATHEMATICAL BASIS FOR DETERMINISTIC QUANTUM MECHANICS AND APPLICATION TO HARMONIC OSCILLATORS
Samy J. Litiloly

PERHITUNGAN TERMODINAMIKA SIKLUS KERJA MESIN DIESEL YANMAR EMPAT LANGKAH SATU SILINDER 5,5 HP DAN 2200 RPM (KAJIAN TEORITIS)
Aloysius Eddy Liemena
THE MATHEMATICAL BASIS FOR DETERMINISTIC QUANTUM MECHANICS
AND APPLICATION TO HARMONIC OSCILLATORS

Samy J. Litiloly
Mechanical Engineering Department, Faculty of Engineering – Pattimura University
Kampus Teknik UNPATTI, Jl. Ir. M. Putuhena, Poka, Ambon – Maluku, Indonesia 97233
E-mail : samyjunusl@yahoo.com

ABSTRACT

The concept of deterministic theory underlying quantum mechanics, usually referred to as “hidden variable theories”. For instance, one may or may not assume the occurrence of information loss at tiny distance scales. One may suspect some sort of cellular automaton or a classical system of continuous fields, or even classical loops, D-branes, or whatever. We discuss Gerardus ’t Hooft idea that refers to as pre-quantization, where the physical system is not modified and complex systems are handled probabilistically. Our results for harmonic oscillators indicate that the energy eigenstates of a quantum system are going to be nice. The next urgent question must be answered is how to construct explicit models in which energy can be seen extrinsic and how can we find its limit cycles. An attractive related problem that found by us is how to introduce weak interactions between two nearly independent systems. Keywords: Deterministic concept, harmonic oscillator, limit cycles.

INTRODUCTION

We suspect that our world can be understood by starting from a pre-quantized classical, or ‘ontological’, system. However, a serious difficulty is then encountered: one indeed gets Quantum Mechanics, but the Hamiltonian is not naturally bounded from below. If time would be assumed to be discrete, the Hamiltonian eigenvalues would turn out to be periodic, so one might limit oneself to eigenvalues E with $0 \leq E < 2\pi/\delta t$, where δt is the duration of a fundamental time step, but then the choice of a vacuum state is completely ambiguous, unlike the situation in the real world that one might want to mimic. If time is continuous, the Hamiltonian eigenvalues tend to spread over the real line, from $-\infty$ to ∞.

In this paper, we derive the plausibility of our assumptions from first principles. First, the formalism is displayed in Section 2. Then, we demonstrate that the most basic building blocks of deterministic theory consists of units that would evolve with periodicity if there were no interaction (Section 3). We use the empirically known fact that the Hamiltonians are all bounded from below both before introducing the interaction and after having included the interaction. This necessitates our introduction of equivalence classes (Section 4), such that neither the quantum mechanical nor the macroscopic observer can distinguish the elements within one equivalence class, but they can distinguish the equivalence classes.

This procedure is necessary in particular when two systems are considered together prior to considering any interaction. We are led to the discovery that, besides the Hamiltonian, there must be a classical quantity E that also corresponds to energy, and is absolutely conserved as well as positive (Section 5). It allows us to define the equivalence classes. We end up discovering a precise definition of the quantum wave function for a classical system (both amplitude and phase), and continue our procedure from there.

Physical and intuitive arguments were displayed in Ref. [3]. In that paper, it was argued that any system with information loss tends to show periodicity at small scales, and quantization of orbits. It was also argued that some lock-in mechanism was needed to relate the Hamiltonian with an ontologically observable quantity E that is bounded from below. The lock-in mechanism was still not understood; here however we present the exact mathematical treatment and its relation to information loss. Interaction can be introduced in a rather direct manner (Section 6), by assuming energy not to be directly additive, but then it is difficult to understand how different energy sectors of the theory can be related to one another.

After a discussion of our results (Section 7) an appendix follows in which we discuss the ‘random automaton’. It allows us to estimate the distribution of its limit cycles, though we immediately observe that the quantum models it generates are not realistic because the energy will not be an extensive
quantity. The deterministic models that might reproduce observed quantum field systems must be very special.

VARIABLES, BEABLES AND CHANGEABLES

Any classical, deterministic system will contain some set of degrees of freedom \(\vec{q} \) that follow some orbit \(\vec{q}(t) \) in time. Time might be defined as a discrete variable or a continuous one, but this distinction is not as fundamental as one might think. If time is discrete, then the set \(\vec{q} \) will have to include a clock that gives a tick at every time step \(t_n = n \Delta t \), or

\[
\frac{d}{dt} q_{\text{clock}} = 1 ; \quad (2.1)
\]

\[
q_i \rightarrow q_i(\vec{q}) \quad \text{at} \quad q_{\text{clock}} = 0 \mod \Delta t \quad \forall i \neq \text{clock} . \quad (2.2)
\]

It is not difficult to ascertain that this is just a special case of a more general equation of motion,

\[
\frac{d}{dt} \vec{q} \equiv \vec{f}(\vec{q}) \quad (2.3)
\]

For simplicity we therefore omit specific references to any clock. In general, the orbit \(\vec{q}(t) \) will be dictated by an equation of motion of the form (2.3).

In the absence of information loss, this will correspond to a Hamiltonian,

\[
H = \sum_i p_i f_i(\vec{q}) + g(\vec{q}) , \quad (2.4)
\]

where \(p_i = -i\partial / \partial q_i \) is the quantum momentum operator. It will be clear that the quantum equations of motion generated by this Hamiltonian will exactly correspond to the classical equation (2.3). The function \(g(\vec{q}) \) is arbitrary, its imaginary part being adjusted so as to ensure hermiticity:

\[
H - H = -i\vec{\nabla} \cdot \vec{f}(\vec{q}) + 2i^\dagger \text{Im}(g(\vec{q})) = 0 , \quad (2.5)
\]

Any observable quantity \(A(\vec{q}) \), not depending on operators such as \(p_i \), and therefore commuting with all \(q_i \), will be called a beable. Through the time dependence of \(\vec{q} \), the beables will depend on time as well. Any pair of beables, \(A \) and \(B \), will commute with one another at all times:

\[
[A(t_1), B(t_2)] = 0 , \quad \forall t_1, t_2 \quad (2.6)
\]

A changeable is an operator not commuting with at least one of the \(q_i \)'s. Thus, the operators \(p_i \) and the Hamiltonian \(H \) are changeables. Using beables and changeables as operators [3], we can employ all standard rules of quantum mechanics to describe the classical system (2.3). At this point, one is tempted to conclude that the classical systems form just a very special subset of all quantum mechanical systems.

This, however, is not quite true. Quantum mechanical systems normally have a Hamiltonian that is bounded from below; the Hamiltonian (2.4) is not. At first sight, one might argue that all we have to do is project out all negative energy states [3] [4]. We might obtain a physically more interesting Hilbert space this way, but, in general, the commutator property (2.6) between two beables is lost, if only positive energy states are used as intermediate states. As we will see, most of the beables (2.6) will not be observable in the quantum mechanical sense, a feature that they share with non-gauge-invariant operators in more conventional quantum systems with Yang-Mills fields. The projection mechanism that we need will be more delicate. As we will see, only the beables describing equivalence classes will survive as quantum observables.

We will start with the Hamiltonian (2.4), and only later project out states. Before projecting out states, we may observe that many of the standard manipulations of quantum mechanics are possible. For instance, one can introduce an integrable approximation \(f_i^{(0)}(\vec{q}) \) for the functions \(f_i(\vec{q}) \), and write

\[
f_i(\vec{q}) = f_i^{(0)}(\vec{q}) + \delta f_i(\vec{q})
\]
after which we do perturbation expansion with respect to the small correction terms δf. However, the variation principle in general does not work at this level, because it requires a lowest energy state, which we do not have.

THE HARMONIC OSCILLATOR

We assume that a theory describing our world starts with postulating the existence of subsystems that in some first approximation evolve independently, and then are assumed to interact. For instance, one can think of independent local degrees of freedom that are affected only by their immediate neighbors, not by what happens at a distance, baring in mind that one may have to expand the notion of immediate neighbors to include variables that are spatially separated by distances of the order of the Planck length. Alternatively, one may think of elementary particles that, in a first approximation, behave as free particles, and are then assumed to interact.

Temporarily, we switch off the interactions, even if these do not have to be small. Every sub-system then evolves independently. Imagine furthermore that some form of information loss takes place. Then, as was further motivated in Ref. [3], we suspect that the evolution in each domain will become periodic.

Thus, we are led to consider the case where we have one or more independent, periodic variables $q_i(t)$. Only at a later stage, coupling between these variables will have to be introduced in order to make them observable to the outside world. Thus, the introduction of periodic variables is an essential ingredient of our theory, in addition to being just a useful exercise.

Consider a single periodic variable:

$$\frac{\hat{q}}{\hat{t}} = \omega$$

while the state $\{q = 2\pi\}$ is identified with the state $\{q = 0\}$. Because of this boundary condition, the associated operator $p = -i\hat{\partial}/\hat{\partial}q$ is quantized:

$$p = 0, \pm 1, \pm 2, \ldots, (3.2)$$

The inessential additive coefficient $g(q)$ of Eq. (2.4) here has to be real, because of Eq. (2.5), and as such can only contribute to the unobservable phase of the wave function, which is why we permit ourselves to omit it:

$$H = \omega p = \omega n; \quad n = 0, \pm 1, \pm 2, \ldots, (3.3)$$

If we would find a way to dispose of the negative energy states, this would just be the Hamiltonian of the quantum harmonic oscillator with internal frequency ω (apart from an inessential constant $\frac{1}{2}$).

The proof is simple mathematics. Write

$$\psi(q) = \exp(\alpha(q) + i\beta(q)), \quad z = e^{iq}$$

Choose $\alpha + i\beta$ to be an entire function within the unit circle of z. Then an elementary exercise in contour integration yields,

$$\alpha(q) = \frac{1}{2} \log(W(q)); \quad \beta(q) = \beta_0 \zeta \int \frac{dq}{2\pi} \frac{1 + \cos(q' - q)}{\sin(q - q')} \alpha(q')$$

where ζ stands for the principal value, and β_0 is a free common phase factor. In fact, Eq. (3.6) is not the only function obeying our theorem, because we can choose any number of zeros for $\psi(z)$ inside the unit circle and then again match (3.4). One concludes from this theorem that no generality in the function W is lost by limiting ourselves to positive energy eigenfunctions only.

In this paper, however, we shall take a different approach. We keep the negative energy states, but interpret them as representing the bra states $\langle\psi|$. These evolve with the opposite sign of the energy,
since $\langle \psi(t) \rangle = e^{i\Omega t} \langle \psi(0) \rangle$. As long as we keep only one single periodic variable, it does not matter much what we do here, since energy is absolutely conserved. The case of two or more oscillators is more subtle, however, and this we consider in the next section.

In this bra-ket formalism, it will be more convenient to tune the energy of the lowest ket state at $\frac{1}{2} \omega$. The kets $|n\rangle$ and bras $\langle n|$ have $E_n = (n + \frac{1}{2}) \omega$. The time evolution of the bras goes as if $E_n = -\left(n + \frac{1}{2}\right) \omega$, so that we have a sequence of energy values ranging from $-\infty$ to ∞.

TWO (OR MORE) HARMONIC OSCILLATORS

As was explained at the beginning of Section 3, we expect that, when two periodic variables interact, again periodic motion will result. This may seem to be odd. If the two periods, ω_1 and ω_2 are incommensurate, an initial state will never exactly be reproduced. Well, this was before we introduced information loss. In reality, periodicity will again result. We will show how this happens, first by considering the quantum harmonic oscillators to which the system should be equivalent, according to Section 3, and then by carefully interpreting the result.

In Fig. 1, the states are listed for the two harmonic oscillators combined. Let their frequencies be ω_1 and ω_2. The kets $|n_1, n_2\rangle = |n_1\rangle |n_2\rangle$ have $n_1 \geq 0$ and $n_2 \geq 0$, so they occupy the quadrant labelled I in Fig 1. The bra states, in view of their time dependence, occupy the quadrant labelled III. The other two quadrants contain states with mixed positive and negative energies. Those must be projected away. If we would keep those states, then any interaction between the two oscillators would result in inadmissible mixed states, in disagreement with what we know of ordinary quantum mechanics. So, although keeping the bra states is harmless because total energy is conserved anyway, the mixed states must be removed. This is very important, because now we see that the joint system cannot be regarded as a direct product. Some of the states that would be allowed classically, must be postulated to disappear. We now ask what this means in terms of the two periodic systems that we thought were underlying the two quantum harmonic oscillators.

First, we wonder whether the spectrum of combined states will still be discrete. The classical, non interacting system would only be periodic if the two frequencies have a rational ratio: $p \omega_1 - q \omega_2 = 0$, where p and q are relative primes. The smallest period would be $T = \frac{2\pi q}{\omega_1} = \frac{2\pi p}{\omega_2}$, so that we would expect equally spaced energy levels with spacings $\omega_1 / q = \omega_2 / p$. Indeed, at high energies, we do get such spacings also in the quantum system, with increasing degeneracies, but at lower energies many of these levels are missing. If the frequencies have an irrational ratio, the period of the classical system is infinite, and so a continuous spectrum would have to be expected.
When two quantum harmonic oscillators are considered together, this does not happen. The spectrum is always discrete. In Fig. 1, it is indicated how to avoid having missing states and variable degeneracies. We see that actually full series of equally spaced energy levels still exist: At any given choice of a pair of odd relative primes \(p \) and \(q \), we have a unique series of bra- and ket states with energies

\[
\omega_{pq}\left(n + \frac{1}{2}\right), \quad \text{with} \quad \omega_{pq} = p\omega_1 + q\omega_2
\]

It is easy to see that these sequences are not degenerate, that all odd relative prime pairs of integers \((p, q)\) occur exactly once, and that all states are represented this way:

\[
E_{n_1,n_2} = \left(n_1 + \frac{1}{2}\right)\omega_1 + \left(n_2 + \frac{1}{2}\right)\omega_2 = \left(n + \frac{1}{2}\right)(p\omega_1 + q\omega_2)
\]

\[
\frac{2n_1 + 1}{2n_2 + 1} = \frac{p}{q}.
\]

Some of these series are shown in the Figure.

We see that, in order to reproduce the quantum mechanical features, that is, to avoid the unphysical states where one energy is positive and the other negative, we have to combine two periodic systems in such a way that a new set of periodic systems arises, with frequencies \(\omega_{pq} \). Only then can one safely introduce interactions of some form. Conservation of total energy ensures that the bra and ket states cannot mix. States where one quantum oscillator would have positive energy and one has negative energy, have been projected out.

But how can such a rearrangement of the frequencies come about in a pair of classical periodic systems? Indeed, why are these frequencies so large, and why are they labelled by odd relative primes? In Fig. 2 the periodicities are displayed in configuration space, \([q_1, q_2]\). The combined system evolves as indicated by the arrows. The evolution might not be periodic at all. Consider now the \((5, 3)\) mode. We can explain its short period \(T_{53} = \frac{2\pi}{\omega_{53}} \) only by assuming that the points form equivalence classes, such that different points within one equivalence class are regarded as forming the same 'quantum' state. If all points on the lines shown in Fig. 2 (the ones slanting downwards) form one equivalence class, then this class evolves with exactly the period of the oscillator whose frequency is \(\omega_{53} \).

The equivalence class for oscillators in the case \((p, q) = (5, 3)\). Lines with arrows pointing right and up: time trajectories of individual points. Solid and broken lines going downwards:

(part of) the \((5,3)\) equivalence class at \(t = 0 \). For further explanation, see text.

Observe in Fig. 2 that, in case \((p, q) = (5, 3)\), due to these fluctuations, five points of system 1 alone now form a single equivalence class, and three points in system 2. This is because we have assigned 5 quanta of energy to system 1 for every three quanta of energy of system 2. More generally, we could represent this situation with the wave function

\[
\text{wave function}
\]
\[\psi_{pq} = e^{\frac{-i}{2}(p\omega_1 q_2 - q\omega_2)} e^{\frac{-i}{2}(\dot{q}_1 + \dot{q}_2)} , \]

(4.3)

where both variables \(q_{1,2} \) were taken to be periodic with periods \(2\pi \). The \((p, q) \) equivalence classes appear to be defined by the condition

\[p q_1 + q q_2 = \text{Constant}, \]

(4.4)

and this means that the \(n \)-dependent part of the wave function (4.3) has the same phase all over the entire equivalence class, if we may assume that the second term in Eq. (4.3), arising from the vacuum fluctuations \(\frac{1}{2} \omega t \), may be ignored.

To describe the equivalence classes it is helpful to introduce time variables \(t_a \) for the subsystems \(a = 1, 2, \ldots \) in terms of their unperturbed evolution law, \(q_a = \omega_a t_a \). Then, writing \(E_1 = p \omega_1 \), \(E_2 = q \omega_2 \), one can characterize the equivalence classes as

\[E_1 \dot{q}_1 + E_2 \dot{q}_2 = 0 \]

(4.5)

which means that the reactions that induce information loss cause \(q_a \) to speed up or slow down by an amount \(\pm \dot{q}_a \) obeying this equation. One can easily generalize this result for many coexisting oscillators. They must form equivalence classes such that fluctuating time differences occur that are only constrained by

\[\sum_a E_a \dot{q}_a = 0 \]

(4.6)

which also are the collections of points that have the same phase in their quantum wave functions. We conclude that, in the ontological basis \(\{ \hat{q} \} \), all states \(|q) \) which have the same phase in the wave function \(\langle \hat{q}|q \rangle \) (apart from a fixed, time independent term), form one complete equivalence class.

ENERGY AND HAMILTONIAN

In the previous section, it was derived that the energies of the various oscillators determine the shape of the equivalence classes that are being formed. However, this would require energy to be a beable, as defined in Section 2. Of course, the Hamiltonian, being the generator of time evolution, cannot be a beable. It is important to notice here, that the parameters \(p \) and \(q \) defining the equivalence classes as in Section 4, are not exactly the energies of \(q_1 \) and \(q_2 \); the Hamiltonian eigenvalues are

\[H_1 = (n + \frac{1}{2}) p \omega_1 ; \quad H_2 = (n + \frac{1}{2}) q \omega_2 \]

(5.1)

with a common integral multiplication factor \(n + \frac{1}{2} \). This \(n \) indeed defines the Hamiltonian of the orbit of the equivalence class. Generalizing this, the relation between the energies \(E \) in Eqs. (4.5) and (4.6) and the Hamiltonian \(H \) is

\[H = (n + \frac{1}{2}) E , \]

(5.2)

where \(n \) defines the evolution of a single clock that monitors the evolution of the entire universe.

Now that the relative primes \(p \) and \(q \) have become beables, we may allow for the fact that the periods of \(q_1 \) and \(q_2 \) depend on \(p \) and \(q \) as a consequence of some non-trivial interaction. But there is more. We read off from Fig. 2, that \(p \) points on the orbit of \(q_1 \) in fact belong to the same equivalence class. Assuming that the systems 1 and 2 that we started off with, had been obtained again by composing
other systems, we must identify these points. But this forces us to redefine the original periods by dividing these by \(p \) and \(q \), respectively, and then we end up with two redefined periodic systems that are combined in the one and only allowed way:

\[
p = q = 1
\]

(5.3)

Only a single line in Fig. 1 survives: the diagonal.

The picture that emerges is the following. We are considering a collection of variables \(q_a \), each being periodic with different periods \(T_a = 2\pi / \omega_a \). They each are associated with a positive beable \(E_a \), such that \(E_a = \omega_a \). The interactions will be such that the total energy \(E = \sum_a E_a \) is conserved. Now as soon as these variables are observed together (even if they do not interact), an uncontrollable mixing mechanism takes place in such a way that the variables are sped up or slowed down by time steps \(\partial_t \) obeying Eq. (4.6), so that, at any time \(t \), all states obeying

\[
\sum_a E_a \partial_t = \left(\sum_a E_a \right) t,
\]

(5.4)

form one single equivalence class.

The evolution and the mixing mechanism described here are entirely classical, yet we claim that such a system turns into an acceptable quantum mechanical theory when handled probabilistically. However, we have not yet introduced interactions.

INTERACTIONS

We are now in a position to formulate the problem of interacting systems. Consider two systems, labelled by an index \(a = 1, 2 \ldots \). System \(a \) is characterized by a variable \(q_a \in [0, 2\pi) \) and a discrete index \(i = 1, \ldots, N_a \), which is a label for the spectrum of states the system can be in. Without the interaction, \(i \) stays constant. Whether the interaction will change this, remains to be seen.

The frequencies are characterized by the values \(E_i^a = \omega_i^a \), so that the periods are \(\Gamma_i^a = 2\pi / \omega_i^a \). Originally, as in Section 4, we had \(\omega_i^a = p_a \omega_a \), where \(p_1 = p \) and \(p_2 = q \) were relative primes (and both odd), but the periods \(\omega_a \) are allowed to depend on \(p_a \), so it makes more sense to choose a general spectrum to start with.

The non-interacting parts of the Hamiltonians of the two systems, responsible for the evolution of each, are described by

\[
H^0_a|n_a, i\rangle = \left(n_a + \frac{1}{2} \right) E_i^a |n_a, i\rangle,
\]

(6.1)

where the integer \(n_a = -\infty, \ldots, +\infty \) is the changeable generating the motion along the circle with angular velocity \(\omega_a \). We have

\[
n_a = -i\partial / \partial q_a
\]

(6.2)

The total Hamiltonian describing the evolution of the combined, unperturbed, system is not \(H^0_1 + H^0_2 \), but

\[
H^0_{tot} = \left(n_{tot} + \frac{1}{2} \right) (E_i^1 + E_j^2)
\]

(6.3)

where \(i, j \) characterize the states 1 and 2, but we have a single periodic variable \(q_{tot} \in [0, 2\pi) \), and

\[
n_{tot} = -i\partial / \partial q_{tot}
\]

(6.4)
In view of Eq. (4.4), which here holds for \(p = q = 1 \), we can define
\[
q_{\text{tot}} = q_1 + q_2,
\]
while \(q_1 - q_2 \) has become invisible. We can also say,
\[
n_1 = n_2 = n_{\text{tot}}.
\]

An interacting system is expected to have perturbed energy levels, so that its Hamiltonian should become
\[
H^0 + H^\text{int} = \left(n_{\text{tot}} + \frac{1}{2} \right) (E^i_1 + E^j_2 + \partial E^\mu),
\]
where \(\partial E^\mu \) are correction terms depending on both \(i \) and \(j \). This is realized simply by demanding that the beables \(E^i_1 \) and \(E^j_2 \) get their correction terms straight from the other system. This is an existence proof for interactions in this framework, but, at first sight, it appears not to be very elegant. It means that the velocity \(\omega^\mu \) of one variable \(q_i \) depends on the state \(j \) that the other variable is in, but no matrix diagonalization is required. Indeed, we still have no transitions between the different energy states \(i \). It may seem that we have to search for a more general interaction scheme. Instead, the scheme to be discussed next differs from the one described in this section by the fact that the energies \(E \) cannot be read off directly from the state a system is in, even though they are beables. The indices \(i, j \) are locally unobservable, and this is why we usually work with superimposed states.

DISCUSSION

When we attempt to regard quantum mechanics as a deterministic system, we have to face the problem of the positivity of the Hamiltonian, as was concluded earlier in Refs [1][2][3][4][5]. There, also, the suspicion was raised that information loss is essential for the resolution of this problem.

Cellular automaton models can be written down that show a rapid convergence towards small limit cycles, starting from any state \(F(0) \). Conway's "game of life" [6] is an example, although that also features 'glider solutions', which are structures that are periodic, but they move forward when released in an empty region, so that they are not limit cycles in the strict sense. It must be emphasized, however, that Conway's game of life will not serve as a model generating quantum mechanics. In a model generating quantum mechanics, the vacuum state is the state with the longest limit cycle, since it has the lowest energy. Thus, the empty state in Conway's game of life would carry more energy than its glider solutions.

States of interest, with which we might attempt to describe the universe as we know it, must be very far away from any limit cycle. They are also far away from the strictly stationary eigenstates of the Hamiltonian. This means that we do not yet know which of the numerous possible limit cycles our universe will land into. This is why we normally use wave functions that have a distribution of amplitudes in the basis of the Hamiltonian eigenmodes. The squares of these amplitudes indicate the probability that any particular limit cycle will be reached. Also note that, according to General Relativity, taking into account the negative energies in the gravitational potentials, the total energy of the universe should vanish, which means that the entire universe might never settle for any limit cycle, as is indeed suggested by what we know of cosmology today: the universe continues to expand. The limit cycles mentioned in this paper refer to idealized situations where small sections of the universe are isolated from the rest, so as to be able to define their energies exactly.

The fact that the observed cosmological constant appears to be non-vanishing implies that a finite volume \(V \) of space will have a largest limit cycle with period
\[
P = \frac{8\pi G \Lambda}{\Lambda V},
\]
which is of the order of a microsecond for a volume of a cubic micron. If \(\Lambda \) were negative we would have had to assume that gravity does not exactly couple to energy.
Lorentz transformations and general coordinate transformations have not been considered in this paper. Before doing that, we must find models in which the Hamiltonian is indeed extensive, that is, it can be described as the integral of an Hamiltonian density $T_{00}(\vec{x},t)$, over 3-space, as soon as the integration volume element $d^3\vec{x}$ is taken to be large compared to the 'Planck volume'. When that is achieved, we will be only one step away from generating locally deterministic quantum field theories.

What can be said from what we know presently, is that a particle with 4-momentum p_μ, must represent an equivalence class that contains all translations $x^\mu \rightarrow x^\mu + \Delta x^\mu$ with $p_\mu = nh$, where n is an integer. It is even more tempting to include here the gauge equivalence classes of General Relativity: perhaps local coordinate transformations are among the dissipative transitions. In this case, the underlying deterministic theory might not be invariant under local coordinate transformations, and here also one may find novel approaches towards the cosmological constant problem and the apparent flatness of our universe.

Our reason for mentioning virtual black holes being sources of information loss might require further explanation. Indeed, the quantum mechanical description of a black hole is not expected to require information loss (in the form of quantum decoherence); it is the corresponding classical black hole that we might expect to play a role in the ontological theory, and that is where information loss is to be expected, since classical black holes do not emit Hawking radiation. As soon as we turn to the quantum mechanical description in accordance to the theory explained in this paper, a conventional, fully coherent quantum description of the black hole is expected. Although we do feel that this paper is bringing forward an important new approach towards the interpretation of Quantum Mechanics, there are many questions that have not yet been answered.

One urgent question is how to construct explicit models in which energy can be seen as extrinsic, that is, an integral of an energy density over space. A related problem is how to introduce weak interactions between two nearly independent systems. Next, one would like to gain more understanding of the phenomenon of (destructive) interference, a feature typical for Quantum Mechanics while absent in other statistical theories.

REFERENCES

[7] S. Nobbenhuis, Categorizing Different Approaches to the Cosmological Constant Problem, gr-qc/0411093, Foundations of Physics, to be pub.

[8] G. ’t Hooft and S. Nobbenhuis, Invariance under complex transformations, and its relevance to the cosmological constant problem, gr-qc/0602076, Class. Quant. Grav., to be publ.
