Quick Links: Home | Advanced Search | Search All Papers | Paparisa | Unpatti Web Portal
Informasi Detil Paper |
|
Judul: | Analisis Diskriminan, Regresi Logistik, Neural Network Dan Mars Pada Pengklasifikasian Data Hbat dan Iris |
Penulis: | Thomas Pentury || email: info@mx.unpatti.ac.id |
Jurnal: | Barekeng Vol. 1 no. 2 - hal. 8-13 Tahun 2007 [ MIPA ] |
Keywords: | Discriminant Analysis, Logistic Regression, Neural Network, Multivariate Adaptive Regression Spline |
Abstract: | The purpose of this research is to apply and compare the discriminant analysis, logistic regression, Neural Network (NN) and Multivariate Adaptive Regression Spline (MARS) at HBAT and IRIS data. Next will be the classification of fourth methods using the SPSS statistical software, MINITAB, MARS, and R. The results showed that the data HBAT predictor variables affected to the response variable which is the quality of the product (X6), Complaint resolution (X9) and Salesforce image (X12), whereas all predictor variables on the IRIS data affect the response variable. A more precise method used in HBAT data classification is NN and discriminant analysis because the value of the resulting classification accuracy is greater, especially for testing. While a more precise method used in the IRIS data classification is discriminant analysis because the value of the resulting classification accuracy is greater. |
File PDF: | Download fulltext PDF |
<<< Previous Record | Next Record >>> |
AMANISAL (Perikanan & IK)
| Info
BUDIDAYA PERTANIAN (Pertanian)
| Info
CITA EKONOMIKA (Ekonomi)
| Info
EKOSAINS (Ekologi dan Sains)
| Info
Indonesian Journal of Chemical Research (MIPA)
| Info
JENDELA PENGETAHUAN (KIP)
| Info
MOLUCCA MEDICA (Kedokteran)
| Info
Pedagogika dan Dinamika Pendidikan (KIP)
| Info
TRITON (Perikanan & IK)
| Info
Prosiding Archipelago Engineering 2018
| Info
Prosiding Archipelago Engineering 2019
| Info
Akses dari IP Address 3.147.68.201
The academic paper repository is maintained by 132125676 for Universitas Pattimura :: All rights reserved Unpatti © 2012 - 2024